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Segment 2D and 3D Filaments by Learning
Structured and Contextual Features

Lin Gu, Xiaowei Zhang, He Zhao, Huigqi Li, and Li Cheng*

Abstract—We focus on the challenging problem of
filamentary structure segmentation in both 2D and 3D
images, including retinal vessels and neurons, among oth-
ers. Despite the increasing amount of efforts in learning
based methods to tackle this problem, there still lack proper
data-driven feature construction mechanisms to sufficiently
encode contextual labelling information, which might hinder
the segmentation performance. This observation prompts
us to propose a data-driven approach to learn structured
and contextual features in this paper. The structured fea-
tures aim to integrate local spatial label patterns into the
feature space, thus endowing the follow-up tree classifiers
capability to grouping training examples with similar struc-
ture into the same leaf node when splitting the feature space,
and further yielding contextual features to capture more
of the global contextual information. Empirical evaluations
demonstrate that our approach outperforms state-of-the-
arts on well-regarded testbeds over a variety of applications.
Our code is also made publicly available in support of the
open-source research activities.

Index Terms— Retinal vessel segmentation, feature learn-
ing, neuronal reconstruction, random forests, 2D & 3D
neuronal segmentation.

|. INTRODUCTION

HE problem of segmenting 2D and 3D image-based

filaments is crucial in a wide range of applications,
including neuronal reconstruction and tracing in microscopic
images [1], blood vessel tracing in fundus images [2], [3],
human vasculature segmentation in 2D digital subtrac-
tion angiography and 3D magnetic resonance angiography
images [4], to name a few. Existing filament segmentation
(depending on the context, also referred to as vessel segmen-
tation or reconstruction, curvilinear structure segmentation in
literature) methods can be roughly grouped into two types:
model-based and learning-based. Hessian-based models char-
acterize filament edges [5] by the second order derivatives.
However, they could be awkward in tackling irregular-shaped
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filamentary structures, such as irregular cross sections caused
by imaging noise or non-uniform staining. Meanwhile, other
model-based methods work by fitting filaments with known
geometric shapes. One example is the widely used optimally
oriented flux (OOF) [6] method, which is based on the
assumption of circular filament cross-sections. This idea is
further extended by Turetken et al. [7] to segment filamentary
structures via a set of regularly-spaced anchor points. Recently,
we have evidenced an increasing development of learning-
based methods [2], [8]-[12], which tackle the challenging
irregular-shaped filamentary structures by exploiting similar
patterns from training samples in a supervised manner. In [8],
a boosting framework is proposed to learn filters that often
lead to the state-of-the-art performance. On the other hand,
there still lack proper data-driven mechanisms to construct
features or filters that sufficiently encode contextual labelling
information, which might be the bottleneck that hinders the
segmentation performance. Due to the vast literature on fila-
ment segmentation, it is not possible to mention all important
research efforts. Interested readers may consult [3], [13], [14]
for more thorough reviews.

Despite these research efforts, it remains challenging to
precisely segment 2D and 3D image-based filaments. This is
evidenced by e.g., the recent BigNeuron initiative [15] that
calls for innovations in addressing the demands from neuronal
science community where a significant number of neuronal
images have been routinely produced in wet labs, while there
still lack sufficiently accurate tools to automatically segment
the neurite structures. To address this challenge, we propose
in this paper a dedicated pipeline by learning structured and
contextual features from data. In practice, our approach has
outperformed existing state-of-the-art methods by a noticeable
margin on testbeds of 2D and 3D neuronal and retinal seg-
mentation applications. The main contributions of our work
are as follows: First, a novel scheme is developed to learn
structured features, each encodes a distinct local spatial label
pattern. Moreover, this feature construction scheme enables
the incorporation of features of variable sizes and locations
into a single feature vector, as illustrated in the left hand
side of Fig. 1. Compared to the otherwise more involved
multi-resolution approaches, it is simple to construct, and
these heterogeneous features are acquired and normalized in
a unified and natural manner. In addition, a set of context
distance features involving tree leave indices is proposed to
capture more of the global contextual information. Second,
our feature construction scheme and in particular the context
distance features work specifically well with the boosted tree
classifiers. Practically our approach is shown to be capable of
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delivering superior performance over existing state-of-the-arts
on a variety of application benchmarks. Last but not least, to
support the open-source convention our package is also made
publicly available.!

Il. RELATED WORK

The work of [8] also learns features from data. Our approach
is however quite different. Instead of each feature being single
label-pixel based, we consider features each being related to
a local label patch centered around current pixel of interest.
This allows us to learn structured features in term of modeling
similarity patterns among pixels of the patch, as well as dis-
criminative features that retains label information. Moreover,
a context distance feature is proposed to include more global
contextual information when making local decisions. In what
follows, we also provide a succinct review of related machine
learning topics. Instead of manual feature engineering, feature
learning aims to automatically extract features from data that
are discriminative and ideally interpretable. The visual Bag-
of-Words (VBoW) methods (e.g., [16], [17]) are probably
the most widely-used feature learning techniques, which has
been extended to accommodate spatial co-occurrences of fea-
tures, capture relative positions of codewords, and have multi-
resolution capacities [18]-[20]. For instance, sparse coding
has been employed in [21] to learn appearance filters. In
addition, a number of other methods have been developed.
Kernel boost [8] learns pixel-wise discriminative features at
each stage of the gradient boosting in the form of linear
filters. In [22], a regression-based approach has been proposed
for centerline detection. These methods nevertheless encounter
difficulties in explicitly modeling the spatial structured label
information. Rather than examining only the label of current
pixel, the auto-context features in [23] are learned to yield
spatially consistent results, where a cascade approach is used
to support the realization of iterative prorogation of label
information in inputs during feature generation. The very
recent structured feature learning paradigm also seeks a feature
map that considers spatial-neighboring labels together with
spatial-neighboring pixel observations. The structured forest
efforts of [24], [25] present such examples where a label
patch is considered as the output space when learning the
feature maps. The neural network and the more recent deep
learning approaches such as [11], [26]-[28] emphasize on
implicit learning of feature representations that are sufficiently
discriminative for prediction purposes, where it is also rela-
tively convenient to incorporate structured label information
by the back-prorogation trick. On the other hand, they often
lack the interpretability of their learned features which are the
internal network weights, which might not be desirable for
domain experts. We note in the passing that, to a degree, the
idea of learning structured features is also related with the
topic of structured prediction, for which we refer the readers
to a comprehensive survey [29].

The design of our proposed features and especially the
context distance feature makes them mostly suitable for

IThe code and detailed information can be found at a dedicated project
webpage http://web.bii.a-star.edu.sg/zhangxw/learnStructFeatures/index.htm.

boosted tree classifiers. Therefore, it is meaningful to give
a brief overview about this research line here. In particular,
we focus on boosting [30], [31], which has wide applications
and various variants e.g., AdaBoost [32], LogitBoost [33],
gradient boosting [34], probabilistic boosted trees [35]. In what
follows, we provide a concise account of the gradient boosting
trees (also known as gradient boosted regression trees) as
background context.

Given training data {f;, y,-}f.V: | Where f; € R" denotes
feature vector with n features and y; € {+1, —1} denotes the
corresponding label. In our context y; = 1 denotes a filament
sample while y; = —1 refers to the background. Gradient
boosting trees are composed of an ensemble of weak decision
trees 1 (f), which collectively predict the target value of input
data f by a function Fy;(f) defined as

M
Fu(f) =D 7jhi(f). (1)
j=1

The weak decision tree /1 ;(f) is iteratively added to minimize
the loss as i1; = argminy, va L(Fj_1(f)+h(f;),yi), where
for the loss function L(-,-) we adopt the widely used expo-
nential loss L(F;(f;),yi) = exp(—=y;F;(f;)). Specifically,
in each iteration, we minimize a quadratic approximation of
the loss function in the following steepest descent strategy: In
each iteration j, we train a decision tree /;(f) to minimize
Zf-vzl wlj (h(f) — rij)z, where wlj = V%L(Fj—l(fi)a y;i) and
ri] = —VpL(Fj_1(f;), y,-)/wl.] denotes the gradient descent
direction. To grow a decision tree, we choose splitting function
t(f) that selects a single feature in f, as well as a threshold
7. A training sample is assigned to the left child if 7(f) < ,
otherwise assigned to the right child. We exhaustively search
all n choices for 7(f) and seek the optimal 7 to minimize the
quantity 3%,y w) (rf —m)* + 2ii(f)ze wi r{ = nr)?,
where #; and 7, are the mean values of ri] in the left and right
child nodes, respectively.

I11. OUR APPROACH

In this section, we describe details of our new approach,
including techniques used to extract structured features and
context distance features as well as the training of boosted tree
classifiers. The pipeline of our approach is shown in Fig. 1.
We first develop a scheme for structured feature learning
in Subsection III-A, aiming to integrate local spatial label
patterns into the feature space. Then, we feed the resulting
features to train two boosted tree classifiers, as shown in Fig. 2.
The first boosted tree classifier is used to obtain context dis-
tance features, as described in Subsection III-B. The resulting
context distance features, together with structured features, are
used to train the second boosted tree classifier which is adopted
for testing image segmentation.

A. Structured Feature Learning:

To start with, a set of N representative patches or cubes
(for 2D or 3D images, respectively) of the same size is
randomly selected from the training images, as is presented
in the left-most panel of Fig. 1. The patches or cubes,
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distance features and training boosted tree classifiers as described

in Subsection IlI-B. Details of the second component are shown in Fig. 2, while the growing of a single tree as well as an illustration of why

structured features are useful are shown in Fig. 3.
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panel presents the construction of context distance features for a specific pixel, where only top d¢ context distance features are preserved. See text

for details. Best viewed in color.

together with their corresponding labels, aggregate to form
a set of training image patches or cubes {p;, yi}f.V: |» Where
yi € {—1, 1} is the label of the central pixel in p;. For each
patch or cube p;, we randomly select m (e.g., m = 1024)
pairs of labels for pixels in p; and construct a m-dimensional
binary vector based on these label pairs. Here, the element
of the binary vector contains either 1 if the label pair are of
the same type, or O if they differ. This gives rise to a N x m
matrix ¥ that contains a rich set of spatially structured label
information. To further reduce the dimensionality, principal
component analysis (PCA) is subsequently performed on Y
to reduce the dimension from m to / (In our experiments, we
choose [ = 10), resulting a matrix Y satisfying Y'Y = X,
with = € R/ being a diagonal matrix consisting of the first
[ largest singular values of YTY. To take topological structure
into account, for each p;, we randomly select a sub-patch or
sub-cube x; € RY, then learn a linear filter W € R?>! such that
the learned feature xl.TW has consistent topological structure
as Y;, with ¥ = [V; Yn]T e RV¥*! Mathematically,
we would like to learn the optimal filter W by solving

min

N
Jmin 2 W=+ ARy (W)
i=l

N
st Y Wheix[ W =%, )

i=1

where R, (W) is a regularization term and 4 > 0 is a para-
meter controlling the data fidelity and the model complexity.
In our experiment, we choose the fused Lasso [36] as the
regularization, that is R, (W) = 3, S [Wip1,— Wi, to
impose smoothness in the filter. Denote X =[x --- x Nl €

RN*4_and define the {1,2-norm as ||All12 = vazl llaill2
for any matrix A = [a c-an]" € RV* | then optimization
problem in (2) can be reformulated as

IXW —Y|l12+ ARp(W) st. WIXTXW =X,
(3)

The construction of Y is inspired by [25], aiming to measure
the similarity of pixels within a patch over the label space.
In this way, the features learned by W can model similarity
patterns among pixels in an image patch. A main difference
between [25] and model (3) is that [25] uses Y to facilitate
the computation of information gain in random forests while
model (3) exploits structured information in ¥ and uses it to
extract structured features. We also introduce the orthogonality
constraint to model the topological structure between different
patches. Moreover, one important reason for us to adopt the
{1,2-norm here as loss function is that the {1 >-norm is known
to be robust to outliers in data points, as shown in e.g., [37].
The final piece of our structured feature is a discriminative
feature vector. To ensure this feature being as uncorrelated
with the rest features (i.e., W) as possible, we penalize the
correlation during feature learning. Formally, we solve

min
WeRdx!

min [ Xo = ylli + pR, (8) + SIWTXTXo/NI3,  (4)
veRd 2

where y = [y1,---,yny]" is the label vector, R,(v) is
a regularization term, and p > 0 and x > 0 are tuning parame-
ters (In our experiments, we use R,(v) := Z?;} [vjt1 —vj]
to impose smoothness in v, and let u 0.1.). In the
last term of (4), we use W' X" Xv/N to approximate the
sample covariance matrix between topological features x ' W
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and discriminative feature x ' v, and attempt to minimize the

correlation. Similar to the model of (3), we use £;-norm as
the loss function, instead of least square loss, to make sure
the model in (4) is robust to outliers.

The alternating direction method of multipliers (ADMM)
is applied to solve both optimization problems (3) and (4).
We repeat T times the random selection process of image sub-
patches (In our experiments 7 = 200), which yields linear
filters {W(k)}kT:1 and {v(k)}szl. Therefore, for each image
patch or cube p;, the following feature vector is constructed:

fio =1 Twh @ )Te® .
MWD, )T,

which is also illustrated in Fig. 1.

It is worth mentioning that features learned by W and v
contain quite different information of the current pixel. On one
hand, the construction of Y enables W to learn similarity
patterns of the neighbor pixels in the label space, while
the orthogonality constraint enables W to model topological
structure among different patches. On the other hand, feature
v provide necessary discriminative information since y alone
records only the label of the current pixel instead of differ-
ence of labels. In addition, due to the equality constraint in
problem (3), the resulting feature vectors { f ,-}f.V: | must lie on
a manifold. By exploiting such constraints, our structured fea-
tures can work well with tree structured classifiers. As shown
in Fig. 3, feature vectors with similar structure lie close to
each other on the manifold, and the decision stumps of a tree
amount to partitioning the curved space of the manifold, which
force image patches with similar filamentary structure to the
same leaf node. A standard application of decision trees is to
compute posterior probability for classification or mean values
in leaf nodes for regression, and usually ignores the leaf index.
In the next subsection, we show how to take advantage of leaf
index information to construct context distance feature aiming
to capture global contextual information.

B. Context Distance Feature:

We learn a boosted tree classifier (Boosted tree classifier I
in Fig. 2) to construct context distance features as follows:
Firstly, we grow a decision tree using { f, y,-}lN: |» and index all
leaf nodes. Secondly, we input all training images into the tree.
Since each pixel will be clustered into one leaf node, we get a
index map for each image as shown in the left panel of Fig. 2,
where we highlight pixels in different leaf nodes with different
colors. Therefore, for each patch p;, we get the leaf index /;
recording the leaf node into which the central pixel of p; is
clustered. Lastly, for each patch p; we compute the distance
from its central pixel to each leaf node, where the distance
is computed as the Euclidean distance between the central
pixel and the nearest pixel within the leaf node. Therefore,
for patch p; we get a distance feature vector ¢; whose length
equals to the number of leaf nodes. Iterate this process M
times, we can grow M trees and get a collection of context
distance feature vectors {c{ }{:11,’,:',’1[\‘,4 as well as leaf indices
{l,-}f\':1 where I; = [ll.l, cee, liM] represents the structure label

of p;.

Note in each iteration of classifier I, a new set of context
distance features are learned and used to train the corre-
sponding tree in classifier II, as shown in Fig. 2. In the
implementation, for the computational cost to compute the
whole context distance feature vector in 3D space or large 2D
space would be computationally expensive, we only collect
the context distance features for the top d. leaf nodes of
the highest weight, that is, keep only d, components in each
distance feature vector ¢;. For the sake of clarity, we use a
toy example to illustrate the construction process of context
distance feature, as follows. Suppose we have trained a tree
at some iteration of classifier I, for a given image we learn
structured feature for each pixel, and by processing the image,
each pixel passes through a particular path of the tree and lands
onto a leaf node. The weight of a leaf node is calculated as the
number of pixels in the node, among which we select the top
d. = 4 leaf nodes of the highest weight. Then, for an arbitrary
pixel x in the image, we find its nearest pixel x1, - - - , x4 from
the selected 4 nodes, respectively. The context distance feature

of pixel x is defined as ¢, = [dist(x, x1),--- ,dist(x, x4)],
where dist denotes the Euclidean distance of two pixels in an
image.

At the same time of constructing context distance features,
we also train a second a boosted tree classifier (Boosted tree
classifier II in Fig. 2). The training of classifier II is the
same as that of classifier I except that when growing each
tree in classifier II, we input both the structured features
{f i},N: , and context distance features {Ci},N: |- In the testing
phase, we use classifier I to construct context distance features
and classifier II to perform segmentation. In the experiments,
we demonstrate that introducing the context distance feature
would significantly improve the segmentation performance.

IV. EMPIRICAL EVALUATION
To examine the effectiveness of the proposed approach,
in what follows a series of empirical experiments are carried
out on different applications, including 2D retinal vessel
segmentation, 2D neuronal segmentation, as well as 3D neu-
ronal segmentation, all on widely-used testbeds. We start with
introducing the experimental configuration.

A. Experimental Configurations

Our Approach and Variants: As discussed in Fig. 1, our
pipeline contains the learning of two types of features, namely
the structured features, or SF in short, as well as the context
distance features, which we may refer to as SF + context
distance, which is the complete version of our approach.

Datasets and Evaluation Metrics: Six sets of publicly avail-
able datasets are employed, each dedicates to one application,
as follows. Four datasets are engaged for the task of 2D retinal
vessel segmentation, including DRIVE [38], STARE [39],
CHASEDBI1 [40] and HRF [41]. DRIVE dataset? contains
40 fundus images of size 584 x 565, while STARE dataset®
contains 20 fundus images of size 605 x 700. CHASEDBI1

2DRIVE dataset can be downloaded at http://www.isi.uu.nl/Research/
Databases/DRIVE/.

3STARE dataset can be downloaded at http://www.ces.clemson.edu/ahoover/
stare/.
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dataset* contains eye images of 14 children, which were
captured using 8 bit color channel with a resolution
of 1280 x 960 pixels, yielding 28 images in total. Two experts’
segmentations are available for each images as ground-truth.
HRF dataset’ contains 45 images, of which one third are
images of healthy patients, one third are patients with diabetic
retinopathy and the rest are images of glaucomatous patients.
Binary gold standard vessel segmentation images, generated
by a group of experts, are available for each image. The size
of fundus images is 3304 x2336. Regarding the training/testing
partition, DRIVE dataset has its own partition, while for other
datasets we use the first half as training subset and the other
half as testing subset.

Then, to facilitate the analysis of 2D neuronal segmentation
systems, the neuronal dataset [2]1° is utilized. This dataset
contains 112 images of in total 675 neurons. The image size is
within the range of 512 x 572. The same training and testing
splits in [2] are adopted in our experiments.

Finally, to demonstrate the application of our approach
on 3D neuronal segmentation, the Gold166 dataset shared
by BigNeuron initiative [15] is engaged here. The Gold166
dataset consists of 79 3D neuronal images along with the
corresponding manual annotations. The sizes of the 3D images
or image stacks vary from 511 x511x597 to 1024 x 1024 x 62.
As some annotations of the image stacks might not be proper,
e.g., annotated filaments are visibly diverging from the 3D
point clouds in raw data, or the annotated 3D filaments are
noticeably much thinner than others in the dataset to match
up consistently with the 3D point clouds, we then end up
with a subset of 34 image stacks’ by filtering away the ones
with questionable annotations. Among them, 17 images are
randomly selected to form the training set, and the rest form
the testing set.

Evaluation Metric: To evaluate the performance, we follow
the common practice in e.g., [2], [42] to ado;l)t the stan-
dard F1 measure (computed as %) and the
precision-recall curve in our experiments. We also compute
the Specificity as 7 NTJiVF 5> and Matthews Correlation Coef-
ficient (MCC) [43] as v TP+FP){TPPXTFNN){TFZVXJrFI‘{VP)(TN+FN)
where TP, TN, FP, FN refer to true positives, true negatives,
false positives and false negatives, respectively. For the 3D
neuronal (i.e., Gold166) dataset, we only use F1 measure.
In particular, to account for the near-boundary annotation
issue,® a tolerance factor ¢ is introduced. Similar to that
of [22], [42], [44], this tolerance zone is used here to exclude
the influence of these near-boundary voxels from the boundary
of human-annotated 3D filaments outward within o voxels.

4CHASEDBI dataset can be downloaded at https://blogs.kingston.ac.uk/
retinal/chasedbl1/.

SHRF dataset can be downloaded at https://www5.cs.fau.de/research/data/
fundus-images/.

%Downloadable from http://web.bii.a-star.edu.sg/zhaoh/data/2D_Neuron_
dataset.zip.

"Downloadable  from http://web.bii.a-star.edu.sg/zhangxw/learnStruct-
Features/3D_Neuron_dataset.zip.

8As shown in Fig. 7(a) & Fig. 7 (f), human annotation is often too
conservative to envelop in the actual 3D filamentary point clouds. In other
words, the ground-truth label for 3D filaments could be smaller than the size
it should be, thus is not sufficiently accurate in terms of segmentation.

In other words, only voxels outside this zone are considered
during performance evaluation. It is worth noting in the
passing that we have in fact examined different schemes (one
such alternative scheme is presented in the supplementary
materials.) to counter the effect of near-boundary annotation
issue, and found out all leads to similar results. Throughout the
experiments on 3D Neuronal dataset, we report the F1 measure
computed using tolerance ¢ = 2.

Comparison Methods: For tasks of 2D Retinal and Neu-
ronal Segmentation, a range of state-of-the-art methods are
considered covering both supervised and unsupervised ones.
They are: (1) Kernel Boost [8] that utilizes gradient boost-
ing to learn convolutional features from data; (2) Optimally
Oriented Flux (OOF) [6] that uses manual filters to delineate
tubular structures; (3) IUWT [5] that is based on isotropic
undecimated wavelet transform, to segment 2D image in a
unsupervised manner; (4) Eigen [4], which is a multiscale
Hessian-based unsupervised method for 2D segmentation;
(5) T2T [45], which is a supervised 2D segmentation system
that integrates pixel classification, medial sub-tree generation
and global tree linking; (6) structured edge (SE), the structured
edge detection technique of [25]; (7) B-COSFIRE [43] that
responds to vessels selectively by computing the weighted
geometric mean of the outputs by applying a pool of
Difference-of-Gaussian filters. (8) LCMBoost [2] which
utilizes an iterative learning-based approach to boost the
performance of an existing base segmentation method.

Unlike our approach, most existing 2D filament segmen-
tation methods could not work with 3D problems. Thus,
for 3D neuronal segmentation, our approach is compared
with a different set of state-of-the-art methods, as follows:
(1) Adaptive Enhancement [46] is a Hessian-based method
dedicated to 3D neuronal segmentation by detecting salient
features via adaptive context windows; (2) GWDT [47] is a
3D neuronal segmentation method based on a region-growing
scheme; (3) Regression Tubularity [22], which could be con-
sidered as an extension of Kernel Boost [8], formulates the
linear structure centreline detection as a regression problem.
These three standard 3D segmentation methods could produce
a probability map, thus allowing us to obtain the F1 measure as
well as the precision-recall curve. As these methods come with
the BigNeuron Gold166 dataset, their default parameters are
assumed to be optimal and are used as is in our experiments.

B. Results and Analysis

Classifiers and Features: As discussed previously, a number
of boosted tree classifiers are applicable in our pipeline.
A systematic study is thus conducted on DRIVE dataset to
gauge the performance of incorporating related classifiers and
typical features. As in Table I, empirically gradient boosting
delivers the overall best results in our context, when comparing
to options including AdaBoost, LogitBoost, and random forest.
This motivates us to adopt gradient boosting throughout our
experiments. On the feature side, four distinct feature types
are considered, including our structured features (SF), raw
features, structured edge (SE) features, and the widely-used
Gabor features. The raw feature is simply the image patch p;



GU et al.: SEGMENT 2D AND 3D FILAMENTS BY LEARNING STRUCTURED AND CONTEXTUAL FEATURES 601

Embedding manifold of
structured feature f;

Fig. 3.

@,
® ® ®&
EES Mm VIR FEA

lllustration of a single tree in the boosted tree classifier. Left panel illustrates why structured features are useful for partitioning patches

{Foviil, {Ci‘}f\;
\).«

Positive Samples

Negative Samples

(i) Neastd
my ..

containing similar filamentary structures into the same leaf node. Right panel shows the function of a single tree, which corresponds to a tree in
boosted tree classifier | when input contains only {f;, y,-},’.i1 and corresponds to a tree in boosted tree classifier Il when input contains both {f;, y,-},’.i1

and {¢;}V .

centered around the target pixel as defined in Section III-A.
The SE features are obtained by the structured edge detec-
tion technique of [25], which includes three CIE-LUV color
channels, two magnitudes and eight gradient channels as well
as 13 pair-wise self similarity features. From Table I, clearly
our structured features outperform the alternative (raw or SE)
features on all classifiers considered. This is due to the fact
that our structured features could capture both discriminate and
topology structure information. Furthermore, the incorporation
of context distance features would usually lead to additional
improvement. It is noted that although raw features sometimes
achieve nearly comparable performance, its combination with
the context distance feature then fails to further advance the
performance, as raw features could not facilitate their context
distance features in term of exploiting topology and structure
information as what structured features can do. The perfor-
mance of raw features on other datasets are not consistently as
well. For example, on STARE dataset, the raw features achieve
a F1 measure of 73.29%, while in comparison SF alone has

already 77.48%, which is 4.19% higher.
1) Influence of Internal Parameters: Our approach

contains a handful of internal parameters, including the num-
ber of weak learners M, tree depth d; of the weak learner,
the number d. of top context distance features we used, and
regularization parameters A and p in optimization problems (3)
and (4), as also illustrated in Fig. 1, Fig. 2 and Fig. 3. Now, we
proceed to evaluate its robustness with respect to the change
of parameter values. While experiments are conducted only
on the DRIVE dataset, practical observation suggests similar
trend on other datasets, so what we have shown here is quite
representative. To avoid overfitting issue, a small fraction (10
images) of the DRIVE training images are randomly picked
and retained as a validation set. Our parameter sensitivity
analysis experiments are thus evaluated on this validation
set. To investigate the effect of a specific parameter, we
assign various values to the parameter while keeping all other
parameters at the default value, and compute the F1 measure
of our methods. The following default values are used in this
section: M = 500, d; = 4,d. =3, 2 =10 and p = 0.1.
As indicated in Fig. 4, overall our approach is often robust
with respect to varying parameter values, such as M, d;, d..
It is relatively more sensitive to the value of A and p. In what
follows we give more detailed analysis.

TABLE |
AN EVALUATION OF VARIOUS RELATED FEATURES AND CLASSIFIERS
ON DRIVE. TWO VALUES SEPARATED BY “/” ARE F1 MEASURES IN
PERCENTAGE (%) OBTAINED WITH / WITHOUT CONTEXT
DISTANCE FEATURES. SEE TEXT FOR DETAILS.

Gradient boosting AdaBoost LogitBoost Random forest

SF 78.56 / 76.82 74.40 / 70.82 | 78.33 / 76.61 73.22 / 68.77
raw feature 76.88 / 76.62 69.63 /62.00 | 76.10/76.09 | 62.36 /49.86
SE [25] 73.52/71.31 63.83/59.49 | 72.63 /7131 6273/ 58.13
Gabor 62.96 / 67.12 56.75762.32 | 62.13/63.91 54.83 7 60.80

Number of Weak Learners: To show how the performance
changes with respect to tree number M, we evaluate the two
variants of our approach under varying values of M and plot
the corresponding F1 measure in Fig. 4 (a). We observe that
the performance improves continuously with the growing num-
ber of trees before considerably slowing down after around
M = 500. In practice, we choose to use M = 500 to tradeoff
between performance and computational burden.

Tree Depth d; and Top d. Context Distance Features: For
each regression tree in the gradient boosting, the tree depth
also matters. As suggested in Fig. 4 (b), similar to the number
of trees, deeper tree might improve the performance but at
a cost of higher computational demand. Similar pattern is
also observed in Fig. 4 (c) when using different values of d..
In practice, we fix d; = 4 and d,. = 3.

A and p in Learning Structured features (SF) and
Context Distance Features: Structured and context distance
features are produced using different A and p values from
set {0.01,0.1, 1, 10, 100}. As displayed in Fig. 4 (d) and
Fig. 4(e) for SF and SF + context distance, respectively, the
performance of our approach is relatively stable, as the overall
change of F1 measures is less than 3%. In practice we set
A =10, and p = 0.1.

2) 2D Retinal and Neuronal Segmentation: Table II
summarizes the performance statistics of the competing 2D
segmentation methods on five datasets, namely DRIVE,
STARE, 2D Neurons, CHASEDBI1, and HRF. Additionally,
Figure 5 presents the more detailed precision-recall curves
on each of these datasets. Representative visual results are
displayed in Fig. 6 which shows (a) the raw image, (b) ground-
truth, (c) the posterior probability estimated by our SF +
context distance variant and (d) its result, (¢) the result of
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Fig. 4. Parameter sensitivity analysis results. Each panel presents the F1 measure as a function a specific parameter while the rest parameters

remain unchanged at the default values.

TABLE Il
PERFORMANCE STATISTICS OF 2D SEGMENTATION USING F1 MEASURE (%), PRECISION (%), RECALL (%), SPECIFICITY (%) AND MCC.

Method
SF SF + context distance | Kernel Boost [8] OOF (6] TUWT [5] Eigen [4] T2T [45] SE [25] B-COSFIRE [43] | LCMBoost [10]
FI1 measure 71.57 £ 2.16 78.86 & 2.15 74.79 + 2.67 67.01 + 3.12 68.81 & 3.31 65.74 + 4.85 40.56 + 2.26 60.98 + 2.75 78.73 & 1.95 75.74 + 3.57
= | Precision 79.31 £+ 2.65 80.50 + 2.53 71.65 + 3.57 65.76 + 4.40 69.23 + 4.71 67.43 £ 4.71 42.72 + 3.82 55.33 £ 3.74 78.87 £ 221 78.59 + 6.87
E Recall 75.95 £+ 2.65 77.33 £+ 2.68 78.30 + 2.49 68.42 +£2.72 68.57 £+ 3.74 64.82 £ 8.16 38.80 + 2.31 68.23 £ 4.14 78.67 £+ 3.14 7411 £ 7.42
& | Specificity 97.11 £ 046 97.28 £+ 0.37 95.50 &+ 0.58 94.81 + 0.76 95.57 £ 0.66 95.43 £ 0.95 92.31 £+ 1.52 91.95 £ 1.15 96.93 £ 0.39 9741 £ 1.16
MCC 0.7442 £ 0.0241 0.7589 + 0.0239 0.7106 & 0.0293 | 0.6214 + 0.0352 | 0.6436 £+ 0.0370 | 0.6116 + 0.0496 | 0.3244 £ 0.0282 | 0.5511 &+ 0.0273 | 0.7567 £+ 0.0210 | 0.7322 £ 0.0349
F1 measure 77.70 £+ 6.19 79.53 + 5.59 77.19 + 6.35 69.58 + 6.40 73.07 + 5.62 67.45 + 9.17 41.66 + 4.81 59.22 +5.74 78.42 + 4.11 78.13 + 5.35
g‘l Precision 77.61 £+ 7.80 79.89 + 6.73 78.61 £ 6.07 70.26 + 6.88 74.60 £+ 6.90 71.93 £3.75 43.53 +£ 6.86 52.67 + 4.94 77.78 + 4.55 82.33 +£5.58
< | Recall 7791 + 4.85 79.24 £ 4.67 75.94 + 7.18 68.98 + 6.21 71.66 & 4.74 66.10 + 7.04 40.24 + 4.15 67.94 £ 8.39 79.18 £ 4.75 75.19 £+ 9.83
a Specificity 97.41 £ 1.01 97.74 + 0.74 97.60 = 0.86 96.63 = 0.97 97.19 £+ 0.84 96.67 £ 1.72 93.78 = 1.92 92.86 + 1.92 97.36 + 0.71 98.04 + 0.93
MCC 0.7519 + 0.0649 0.7724 + 0.0588 0.7470 + 0.0657 | 0.6613 4 0.0672 | 0.7008 + 0.0587 | 0.6488 + 0.0791 | 0.3525 & 0.0441 | 0.5448 + 0.0574 | 0.7593 + 0.0438 | 0.7614 + 0.0527
2 | F1 measure 84.87 &+ 3.92 86.17 + 3.33 81.17 £ 4.67 65.58 +5.29 73.96 + 4.37 68.30 + 4.50 69.58 + 4.44 58.42 + 6.33 74.26 + 3.79 83.96 + 3.78
£ | Precision 83.19 £ 4.65 85.02 + 3.86 80.58 + 4.97 60.33 + 6.97 69.71 £+ 7.19 62.39 £ 7.15 66.26 + 6.30 48.82 + 7.92 69.65 £ 6.49 74.96 + 7.32
2 [ Recall 86.71 + 3.87 87.45 + 3.83 81.92 + 5.49 72.57 = 6.31 79.41 £ 4.79 76.76 + 7.81 73.73 £ 4.98 74.06 £+ 6.49 80.08 + 3.90 96.71 + 3.47
;: Specificity 99.51 £ 0.30 99.57 + 0.27 99.45 + 0.34 98.71 = 0.72 99.07 £+ 0.49 98.76 £ 0.65 99.02 + 0.47 97.96 &+ 0.91 99.09 £ 0.44 99.19 £ 0.36
« [ MCC 0.8448 + 0.0402 0.8581 + 0.0347 0.8068 + 0.0487 | 0.6504 £ 0.0518 | 0.7353 £ 0.0431 | 0.6804 + 0.0438 | 0.6894 £ 0.0447 | 0.5866 + 0.0577 | 0.7384 + 0.0367 | 0.8441 £ 0.0321
= F1 measure 67.50 & 3.77 72.02 £ 3.11 69.49 + 3.06 47.12 + 3.46 61.44 £ 3.10 62.20 + 4.08 20.47 £+ 1.69 53.59 + 4.07 69.08 & 3.08 -
& | Precision 66.60 = 3.89 71.08 + 2.89 69.32 + 2.59 41.32 + 4.64 59.80 £ 4.08 57.95 £ 5.28 13.16 + 1.41 4248 + 4.84 64.74 £+ 3.66 -
2 [Recall 68.50 & 4.32 73.03 £ 3.72 69.71 + 3.97 5528 + 3.18 67.04 & 2.61 67.40 £+ 3.92 47.14 £ 5.54 73.19 £ 3.14 74.18 & 3.77 -
é Specificity 96.64 £+ 0.49 97.10 £ 0.38 96.97 = 0.52 92.08 = 2.14 94.98 £ 0.86 95.14 £ 1.19 69.25 + 5.87 90.19 £ 1.69 96.00 £ 0.86 -
Q | MCC 0.6432 + 0.0379 0.6928 + 0.0314 0.6652 + 0.0312 | 0.4167 & 0.0403 | 0.5758 + 0.0333 | 0.5745 + 0.0442 | 0.1005 + 0.0200 [ 0.5007 + 0.0370 | 0.6604 + 0.0331 -
FI measure | 76.86 &+ 4.53 77.49 L 4.66 75.67 £ 5.10 4959 + 652 67.68 £ 6.06 7133 + 6.60 10.18 £ 1.4 53.66 £ 5.10 5454 + 546 =
&, | Precision 7175 +£5.28 78.25 + 5.47 76.42 + 6.12 50.96 + 8.29 69.65 + 8.09 79.85 £+ 6.83 13.16 + 1.88 4440 + 6.39 41.55 £+ 5.67 -
& | Recall 76.02 + 4.13 76.78 £+ 4.16 7499 + 438 4844 £ 492 6597 £+ 4.45 65.09 £ 833 36.54 £ 426 68.58 £+ 3.74 79.92 + 3.84 -
= Specificity 97.95 £ 0.41 97.99 £+ 0.43 97.82 +£ 0.47 95.49 £ 0.96 97.25 £ 0.73 98.43 + 0.59 76.27 + 5.84 91.61 £ 1.93 89.24 £ 0.92 -
MCC 0.7472 + 0.0474 0.7541 + 0.0489 0.7343 + 0.0535 | 0.4495 £ 0.0696 | 0.6477 £ 0.0644 | 0.6959 + 0.0623 | 0.0856 + 0.0196 | 0.4971 + 0.0515 | 0.5218 + 0.0511 -

our SF only variant, as well as two most competing methods,
(f) Kernel Boost [8] and (g) SE [25]. As shown in Table II,
in terms of F1 measure, the SF variant of our approach alone
is capable of slightly outperforming the best state-of-the-art
methods, Kernel Boost, B-COSFIRE and LCMBoost, on all
testbeds. Besides, the full version of our approach, namely SF
+ context distance outperforms the SF variant by a noticeable
margin of 1% to 2% higher F1 scores on average. This
exemplifies the usefulness of the context distance features in
our approach.

Fig. 5(a) presents the precision-recall curves of comparison
methods on DRIVE dataset. Our SF + context distance variant
significantly outperforms existing methods in a wide range of
areas, especially during the recall value range of [0.6, 0.8],
which corresponds to the most useful zone in most prac-
tical applications. The best existing method, Kernel Boost
method, shows slightly better precision when the recall is
more than 0.95, which is too extreme to be of any practical
use. On the other hand, Kernel Boost are far inferior to both
of our variants in most of the cases (i.e. in the recall range
of [0, 0.9]). A representative example presented in the first row
of Fig. 6 provides visual evidence that our approach is capable
of suppressing false alarms and missing ones, while secur-
ing reasonable amount of true positive vessel foregrounds,
when compared to existing methods like Kernel Boost
and SE.

Fig. 5(b) again illustrates the superior performance of our
SF + context distance variant over any other methods on
STARE dataset. This point is also illustrated in Fig. 6 that
both of our variants successfully avoid the ambiguous vessels
while recover equivalent amount of detailed vessels. It is worth
noting that, in this dataset, our SF only variant is sufficiently
effective in high recall region when compared to Kernel
Boost. Additionally, a 5-fold cross-validation is conducted
on STARE, where the average F1 measure is 78.30% for
SF + context distance feature, and 76.41% for SF, which is
consistent with our aforementioned experiments where the first
10 images were used for training.

For the rest datasets, as presented in Fig 5 (c¢), Fig 5 (d),
and Fig 5 (e), our SF + context distance again outperforms
other methods by a large margin, which nicely coincides
the performance summary of Table II, where our approach
overtakes other competing methods most of the times.

Exemplar results on 2D retinal and neuronal datasets
are presented in Fig. 6, which provides visual evidence
that our approach outperforms existing methods like Kernel
Boost and SE. We also observe that the 2D neuronal dataset
seems to pose less challenge than the retinal datasets. This
could be possibly due to the fact that the neurons dyed
in fluorescent protein exhibit a clearer and relatively more
visible boundaries. On the other hand, both variants of our
approach are able to ignore the out-of-focus neurons in the
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Fig. 5. Precision-recall curves of comparison methods on (a) DRIVE, (b) STARE, (c) 2D Neurons, (d) CHASEDBH1, and (e) HRF, respectively. Best

viewed in color.

I true positive

I false negative

I  false positive |

STARE DRIVE

2D Neurons

(a) Input image (b) Ground-truth (C) Probability map

(d) SF + context distance

(8) se

(B) SF (f) Kernel Boost

Fig. 6. Exemplar results on segmenting 2D retinal and neuronal images. (a): Input images; (b): Ground-truth; (c): Probability maps of our approach
(SF + context distance variant); (d & e): Error images of our approach (SF + context distance & SF only); (f): Error images of Kernel Boost; (g): Error
images of SE. Here green denotes false alarm and the magenta denotes the missing error. Best viewed in color.

background while Kernel Boost is unable to tell them apart
from the high quality neurons.

In addition, experiments are also carried out to focus
specifically on the optic disk region. This helps to examine
the performance of our approach specifically on this difficult
region, where existing methods are often performing less well
due to the existence of packed nerve heads. A masked area is
centered around the optical disk with a radius of 100 pixels is
applied to extract the region of interest, as illustrated in Fig.l
of the supplementary file. Table III displays the quantitative
F1 results. Similarly, our complete approach still outperforms
rest competing methods.

3) 3D Neuronal Segmentation: Here, the experiment
focuses on the task of 3D neuronal segmentation using the
Gold166 dataset. Exemplar visual results are presented in
Fig. 7, where the input images are overlayed by ground-truth
annotations in blue color as presented in the leftmost column.
It can be observed from especially the zoom-ins that, compared
with the three state-of-the-art segmentation methods (namely
Adaptive Enhancement, GWDT, and Regression Tubularity),
our filamentary structure predictions are more capable of
filtering away background noises while still retaining the
connectedness along the neuron branches. Quantitative results
are presented as the precision-recall curves in Fig. 8, where
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TABLE IlI
COMPARISON EVALUATION FOCUSING SPECIFICALLY ON THE OPTICAL DISK REGION, AS ILLUSTRATED IN THE EXEMPLAR OPTICAL DIsSK
REGION MASKS OF SUPPLEMENTARY FIG. 1. NUMBERS ARE IN PERCENTAGE (%) OF THEIR F1 MEASURE

\ [ SF [ SF + context distance | Kernel Boost [8] [  OOF [6]

[ TUWT [5] |

Eigen [4] [ T2T[45] | SE[25] | B-COSFIRE [43] | LCMBoost [2] |

| DRIVE | 81.64+£2.79 | 8327 +249 | 80.60 + 4.26

| 71.79+3.52 | 69.73 £ 4.50 | 67.18 +-4.31 | 48.85+3.06 | 65.76 + 3.76 |

82.91+2.87 | 78.27+4.04 |

(b) SF + context distance

(f) Input image with ground-truth (g) SF + context distance

Fig. 7.

(C) Adaptive Enhancement

(h) Adaptive Enhancement

(e) Regression Tubularity

(i) ewpr (j) Regression Tubularity

Exemplar 3D neuronal segmentation results on Gold166 dataset. (a & f): Input images with ground-truth in blue; (b & g): Results of our

SF + context distance variant; (c & h): Results of Adaptive Enhancement [46]; (d & i): Results of GWDT [47]; (e & j): Results of Regression

Tubularity [22].

our approach (i.e., SF + context distance) outperforms the
best comparison method, GWDT, by a noticeable margin
most of the time, and is only overtaken by GWDT when
recall is over 92% and precision is below 50%. The SF
variant of our approach performs only slightly inferior to the
SF + context distance variant and is clearly the second best.
It is also observed that the Regression Tubularity is able to
achieve the highest precision at the cost of missing much of
the neurons. One reason is that this approach is particularly
designed to produce the maximal response at the centreline of
the curvilinear object, thus making it sometimes less sensitive

to the whole body. Table IV summarizes the F1 measures as
well as of the error bars (i.e., 1-standard deviation) of the
quantitative evaluation.

C. Time Complexity Analysis

The complexity of our algorithm consists of three main
parts: computing structured features, computing context dis-
tance features and training gradient boosting classifiers.
We focus on the first two parts since the complexity of train-
ing gradient boosting classifiers has been extensively studied
(e.g., [31]) and hence omitted. To compute both structured
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TABLE IV
COMPARISON OF 3D NEURONAL SEGMENTATION METHODS ON GOLD166 DATASET USING F1 MEASURE (%) WITH TOLERANCEC = 2.

[SF

| SF + context distance | Adaptive Enhancement [46] | GWDT [47]

[7938+0.75 |  79.89+933 |

58.53 £ 14.27

| Regression Tubularity [22] |
\ |

‘ 75.77 £ 10.52 65.75 + 12.48

0.21] —— [F1 = 79.89%] SF + context distance
----[F1=79.38%] SF

[F1 = 58.53%] Adaptive Enhancement
0.1H [F1 = 75.77%)] GWDT
—— [F1 = 65.75%] Regression Tubularity

L L L L L
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Recall

Fig. 8. Precision Recall Curves of 3D neuronal segmentation methods
on Gold166 dataset.

features W and v, we employed ADMM, which is an iterative
algorithm, we assume the numbers of iterations are given
by Ni‘?;r and Nj,,., respectively. Then, the complexity of
computing both W and v is given by O((N +d) min(N, d)? +
(N + d)dIN}},, + ((d + DI* + (N + d)d)N},,.). Computing
J
l
patch p; in the j-th tree requires O(d > ;¢ Ni), where
Ny denotes the number of pixels in the top k-th leaf node.
Thus, the total complexity of computing {c/ {::1111\;/1 is given
by O(dMN ;¢ | Ny). We note that in practice the time
of computing structured features usually dominates that of
computing context distance features. In testing phase, on 2D
dataset DRIVE, the average computational time of SF and
SF + context distance is 173.3 seconds and 350.0 seconds per
image, respectively; on the 3D dataset, the average computa-
tional time of SF and SF + context distance is 243.2 seconds
and 486.7 seconds per image, respectively.

context distance feature vector ¢; for the center pixel of

V. CONCLUSION

We present a supervised feature learning approach for
filamentary structure segmentation. Empirical evaluations on
2D and 3D applications demonstrate the competitiveness of
our approach. For future work, we aim to investigate its appli-
cations in e.g., 2D and 3D human vasculature segmentation.
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